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SUMMARY

The momentum integral equations are derlved for the boundary layer
on an arbitrary curved surface, using a streamline coordinate system.
Computations of the turbulent boundary layer on a slightly yawed cone are
made for a Prandtl number 0.70, wall to free-stream temperature ratios
of 1/2, l, and 2, and Mach numbers from 1 to 4. Deflection of the fluid
in the boundary layer from outer stream direction, local friction coeffi-
clent, displacement surface, 1l1ft coefficient, and pitching-moment coef-
ficient are presented.

INTRODUCTION

The flow of & laminar boundary layer over & cone in a supersonic
stream has been well established, not only when the cone is salined with
the free stream (refs. 1 and 2) but also for certaln perturbed motions.
Moore (refs. 3 and 4) has computed the boundary layer on a cone at angle
of attack, and Illingworth (ref. 5) hae found the flow when the cone is
spinning. Recently, the laminar boundsry layer for a cone that is both
spinning and at angle of attack has been investigated (refs. 6 and 7).

The corresponding treatment of the turbulent boundary layer on a
cone has only been begun. Van Driest (ref. 8) and Gazley (ref. 9) have
studied the cone at zero angle of attack. They have found transforma-
tlone relating boundary layers on cones to those on flat plates.

Van Driest's method represents the turbulent stresses according to the
mixing-length theory, while Gazley uses the momentum-integral equations.

The investigation of the cone at yaw (attack) or in spin is impeded
by the lack of any generalization of the turbulent stress representations
to three-dimensional boundary layers. Moreover, it appears from experi-
mentel measurement (see ref. 10 for review of experimental results) that
the "principle of independence” may not hold for three-dimensional tur-
bulent boundary laeyers. That is, on a yawed cylindrical surface, the
flow in the plane normal to the axis may not develop independently of
that along the generators, &s in laminsr, incompressible flow. From
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these considerations it appears that a resolution of the equations of
motion along a body coordinate system will not, in genersal, lead to a
tractable problem. More appropriate for this case 18 the integral method
as applied by Mager (ref. 11), which follows the development of the
boundary layer along a streamiine, sssuming that the thickness, skin
friction, and other properties behave nearly as in plane flow.

The following development extends Mager's use of the integrel method
to compressible flow over arbitrary curved surfaces. The specific case
of the turbulent boundery layer on & cone at small angle of yaw is con-
sldered. The forces exerted by the boundary layer on the cone and the
heat transfer to the surface are computed.

SYMBOLS
A defined in equation (19)
B defined in equation (18)
c constant
Cp frictional drag coefficlent
Ce local friction coefficient (defined in eq. (12))
Cy, frietional 1ift coefficlent
Cum pitching-moment coefficient
D defined in equation (51)
F defined in equation (42)
FD frictional drag force
L frictional 1ift force
g determinent of metric coefficients
gij . metric coefficients
I integral
K constant

LgsLysNy,P1,RysRy  defined in equation (40)

SLCY
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s(1)

Mech number on surface of unyswed cone
Mach number on surface of yawed cone
Mach number azhead of shock

pltching moment

index, equation (15)

Prandtl number

pressure

distance from apex of cone

Stanton number

arc length in ith'direction
temperature

time

veloclty component in direction of cone ray
veloclity component in 1% direction
circumferential velocity component
constants defining potentisl flow
coordinate in streamline system of coordinates
deflection angle at wall

defined in equation (45)

ratio of specific heats

displacement surface height
boundary-layer thickness

displacement thicknesses, equation (11)

Yaw apgle
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| perameter defining pressure in potentisl flow
® cone helf-angle

611,621,022 momentum thicknesses, equation (11)

A yvaw parameter .

u viscosity

v kinematic viscosity

3 parameter defining density in potential flow
o) density

TE,T(iJ) viscous stress

¢ angle gbout wind axis

] angle about body axis

Subscripts:

m mean value

8 stream value

W wall value

Superscript:

value on unyswed cone

INTEGRAL EQUATIONS ON A CURVED SURFACE

2LEY
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Congider the boundary layer of thickness & on the surface 8 of
sketch (a). The projection of the stream velocity ug on the surface
determines the x! direction. (It is assumed that ug 1s the velocity
a potentisl flow would have at the surface.) The direction in the plane
of the surface normal to x' is designated x2. With the choice of xC
normal to the surface the result is a right-handed orthogonal system.
There can, in genersal, be & pressure gradient in the x2 direction. The
effect of the pressure gradient is much stronger upon the low-energy
fluid in the boundary layer than upon the outer stream. Consequently,

u? does not vanish in the boundary lsyer, and the turning of the stream-
lines within the boundary layer is greater than at x0 = 5. The angle
of deflection between the outer streamline and the limiting direction of
the streamlines at the surface is denoted by «.

The element of arc ds 1in the x-system is given by
(a8)2 = gp0(ax0)2 + g1y (ax)? + gpp(ax?)?

where the 814 are the metric coefficients. Of these, €11 end 800
are functions of x© xl x% determined by the surface S. By choosing
0 to be the normal distance from 8, it is correct to set &g =1.

With the definition
g = Igijl = 811892

the equation of continulty becomes (ref. 12)

g _a_(pui)+ipui_§_lng]=0 (1)
=0 Laxt 2 dxt
The momentum equations are (as derived from ref. 12)
[ 1 % _ 1 = = 0,1,2 2
;(pu T e ok Ey W)t PO (2

In equation (2) ut 1 is the covarient derivative of the contravariant

vector ul with respect to xz, and Ti is the stress tensor excluding
pressure.
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It is more convenient later to have (1) and (2) in terms of the
physical components of the veloclities and stresses. The physical com-
ponents are given by

u(1) = /gy ul (3)

g
(1) = ,\f% o (4)

and the arc lengths in the three coordinate directions are

as(1) = VAT axt (5)

If, in addition, the results of the gppendix are used to choose the
dominant turbulent force terms, equations (1) and (2) become, respectively,

i‘: [gg(%l + pu() maﬂ In '\/E;-T—i} 0 (6)

i=0 _

and

.‘/ 0 ln-\/
f [pu(i) %—%:l + pu(0)u(1) —5—(—)-—- + pu(1)u(2) _?s-ﬁ)_
i=0

- pu2(2 B——(—y in V822 881%%]7-_ E_?P-YB 1 (7)

2 d 1n-/ 0 1ln+/
g [pu(i) 8: 52- ] + pu(0o)u(2) W?Eg + pu(1}u(2) W)gi%

o Inv/g17 (o2 >
- pu?(1) 35(2) a:Eo)) . EJ%T (8)

Outside the boundary layer, equations (7) end (8) become

auS
o Y " - (0)
and
o O ln/g;;

psus IO (10)

2.1 CF.
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Equations (7) end (8) are now to be integrated scross the boundary layer
meking use of (6), (9), (10), and the following definitions of displace-

ment and momentum thicknesses:

5[
&% =f 1- —(—)-puul ]dxo
o L

Pglg

\

51
911=f 1-4—)-‘11]—-(—1"“1 ax®

B Ug | PsYs

o[

&j[’ ugzg Eugl}
621= - u
0 Pslg

ul2) pul{2 0
922=_£ u(z) pule) o

u
Ug Pglg J

The result is

9877 Ba1
Sy * o et 2 eef Ve + S i % ¢ty
as*
+ 61 3s(ziln°s 3811-9226‘@)'1“'\/82 Ss(z)
* 3 T(Ol) 1
-3 in p.u g7 = W =2
Ty I Pate Ve gt =g O
1 2 %55

d ) 2
() t %21 S(ay 1P Pe¥sl22 T ey T %22 Sy 1B PsYs VELL

1 wo2)y 1
_(911+Sl)a(2)ln-\/_= cfao—lﬁ’ Ce tan o

(11)

(12)

(13)

In deriving (12) and (13) use has been made of the fact thaet the metric
coefficients change very little over the thickness 8 of the boundary
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layer, so that (ref. 12)

sty Vo = sty 2 Vsl [ o]
3_8%5 1o /&gy = B?%ﬂ 1o '\/‘gTJ,x%o l:l +9(§)] - (14)

C ~1
50 VR

o~

where in each of equations (14) R is some radius of curvature. Terms of
order S/R compared with unity have been neglected in (13).

Equations (12) and (13) govern the development of a compressible
boundary layer on a curved surface on those portions of the surface where
the redius of curvabture is very much greater than the boundary-layer
thickness. In this respect the foregoing derivation resembles that of
Timman (ref. 13) for laminar, incompressible boundary layers in con-
trast to that of Msger (ref. 14) for incompressible boundery layers over
axisymetric bodies at yaw. %

VELOCITY PROFILES AND FRICTION COEFFICIENT =

The five boundery-layer thicknesses (11) that arise in the equations
of motion (12) and (13) are functions of the two velocity profiles in
the boundery layer u(l)/uy; and u(2)/ug, and of the density ratio
p/ps. These three unknown varisbles along with the friction coefficient
Cp and the deflection angle o give a total of five. Therefore, hy-
potheses sbout the boundery-layer cheracteristics must be added to the
two equations of motion for the system to be solveble. The only hypoth-
eses avallable are those suggested by studles of the boundary layers on
flat surfaces where the streamwise pressure gradient is negligible., It
1s convenient to write these hypotheses here and to discuss in a sub-
sequent section whether they are sppropriate to a cone at yaw.

With respect to the velocity profile in the direction of the free
stream, the customary assumption of a power law is made; a8 in planar
flow,

aty) . ()7 (15)

Ug [

The index n 1s known to vary roughly as the logarithm of the Reynolds
number (ref. 15), although to simplify computations 1t is usually kept
at a constant value of 7 to 9, v

A
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The component of crossflow in the boundary layer u(2)/ug; must
vanish both at the wall and at the edge of the boundary layer s a8 shown
in sketch (2). An expression which yields a qualitatively correct pro-
file and which is also quantitatively accurate for slow flows (ref. 11)
is

ﬁugl = (%)l/n (1 - X_SO)Z tan o (16)

F'or the density ratio p/ps there 1s avallsble under the condition
of negliglble pressure gradient the quadratic in the veloeity profile
that holds in plane flows (e.g., ref. 8):

-1
)
where )
T
BE(1+Pr1/3T—§——l‘Mg)T§-l (18)
T (19)

The subscript s refers to conditions outside the boundary layer, and
T, 1s the (constant) temperature of the wall. The factor prl/3 is an
empirical correction (ref. 18).

Again, using a property of plenar flow, the friction coefficient is
replaced by a generalized Blasius formulsa

Ce = K(i_j)l/é (%)5/4 (%5)1/4 (20)

The subscript m refers to reference conditions in the boundary layer.
Eckert (ref. 17) gives for a reference temperature

Ty = & (B, +Ty) +0.22 prY® Lt o 7 (21)

The value of K 1is generally tsken as sbout 0.045 for a flat plate and

% (0.045) for a cone alined with the stream,

3

The relations (15) through (21) reduce the number of dependent vari-
ables to two, the thickness & and the deflection angle «. Stream
Mech number and ratio of wall to stream temperature are the parameters.
Further progress in the solution of the equations of motion (12) and (13)
requires knowledge of the sitream of a glven configuration (:L.e., Ms).
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STREAM COORDINATE SYSTEM ON A SLIGHTLY YAWED CONE

The coordinate system on the yawed cone is composed of the
potential-flow streamlines on the surface and their orthogonal trajec-
tories., A comparison 1s made in filgure 1 of the flows on the surface of
an unyawed cone and a yawed cone, Whereas the surface streamlines coin-
cide with the elements of an unyawed cone, on a yawed cone they are de-
flected by the clrcumferential pressure gradient.

The potential flow may be found for small yaw angles € by use of
the tables of reference 18. (The definition of € wused here and in
ref. 18 18 the negstive of that of some treatments.)

In terms of the angle ¢ about the wind axis, and to first order
in ¢, the radial and circumferential components of velocity are given

by

Uu=u-+ X CoS ¢ (22)
W= ez sin @ (23)

vhere x,z,u are coefficients tabulated in reference 18 against cone
angle and Mach number, The velocity wu 18 recognized as the radial
velocity at no yaw (&€ = 0). When msking computations it is necessary
(ref. 3) to replace the values of =z appesring in reference 18 by

z = -z (tables) -2x/sin ©, At the surface of the cone it is allowsble
to first order in € +to replace the angle ¢ by the cone angle ¥
(ref. 19). Then the path of the streamlines on the surface of the cone
is gilven by

ar
:71 ) r si:t(@ a¥ (24)
at
Integration of (24) ylelds c
zZ ~-X gin © ~Zsin ©
£(x?) = 1ot [rE (s1n ¥) ® ] (25)

where each value of the parameter xz 1s asgoclated with a streamline,

The exponent c/sin ® appearing in (25) is the parameter describing the
perturbation of the system from zero yew, and is hereinafter denoted as

Al

rE —2 (26)

aLEY
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Iet the Pfunction f(xz) be chosen so that at zero yaw (M = 0) x% = -cos ¥.

Then
2(s2) = L X2 (27)

Equations (25) ag.d (27) taken together are an implicit transforms-
tion from r,¥ to x°. Their combination yields

x® = -cos ¥ - sin®y 1n r%/T (sin *)-(x/u)sin ® (28)
Equation (28) describes the streamlines on a yawed cone to first order
in the yaw parameter A. The new coordinete xZ runs from -1 at the
top of the cone to +1 at the bottom.

The curves orthogonal to the streamlines are defined by

dr - _ _ £z 8in
r sin © d¥ u + &x cos ¥

which upon integration ylelds

1w r(l - A sin2®%cos ¥) (29)
On the left of (29), x- is a parameter associsted with the family of
normal curves or, alternatively, a coordinste measured along the stream-

lines, Egquations (28) and (29) are the transformation from the unyawed
to the yawed coordinate system.

The inverse transformation is readily found to be

r=xi(l - A sinzﬁ)%xz) (30)
cos ¥ = -x° - X[l - (xz)z]{'% n x* - '}{—;%L@ 1HEL - (Xz)z:l} (31)

On the surface,
(@)% = (ar)? + (r sin © ay)?

= 811(531)2 + Ezz(dxz)z (32)



1z NACA TN 4208

Using (30) and (31) in (32), it is found that

g1 = 1 - 2\ sin%.2 x? (33)

-é— 5“21 ®1n (1 - (xz)zj}) (34)

The density and velocity at the edge of the boundary layer are also
required in the equation of motion. They are obtained from reference 18
to first order in A as follows: '

u? =u? 4 w2 = (1 - 2\ EEIL @2 (35)
u
pg = (1 - )\E_s%_n_@ x2) (36)
p
by = 31 - 218 @ 2 (s7)
P

From (35), (36), and (37), it follows that

Ty = T [1 + A sin @(—E;-_- - -ll)xz] (38)
PP
and
Mg = 'ﬁz[l + A sin ®(—E- 2x -é)xz] (39)
p * 0

In the preceding equations, a bar over a quantity indicates ite value at
ZEero yaw.

With the aid of expressions developed, it is possible to show that,
for a cone at small angle of yaw, the forms hypothesized for the velocity
and density profiles in the preceding section are indeed appropriste.

The substitution of_(16), (33), (34), and (37) into the equation of
motion (7) glves, upon neglecting terms of second order in o and )
and the term of order B,

5 [ 28]- 56

i=0

2LSY



NACA TN 4208 ’ 13

The pressure gradient 1s seen to be negligible, so that the velocity pro-
files (15) and (16) are good approximations.

Moreover, replacing u(l) by temperature send <T(Ol) by heat flux
over heat capacity in the preceding equation results in the energy eque-
tion. This is the condition necesssry for Reynolds' sanalogy between
stress and heat flux to hold. Consequently, the density (or temperature)
profile (17), which is based on Reynolds' analogy, can be properly used
for the cone at small angle of yaw.

SOLUTION OF THE MOMENTUM INTEGRAL EQUATIONS

The momentum integral equations (12) and (13) are now to be written
for a yawed cone at constant tempersture in terms of the boundary-layer
thickness & and the deflection angle «. In order to do this it is
necessary to evaluate first the integrals (11) using (15) through (21).
It is convenient to specialize at once to n = 7 in the profiles (15)
and (16) and to meke the following definitions:

n f 1+ Bg - %2
gmag

0 (1 + Bt - B%t?)?

= 552
=-__21 — B'2A2+2A(m-l)lm BmIJ
4A" + B |1 +B - A

Replf3YX-1ly T
2 T

reet/3 L1 g

w)
i
|l
N

to
I.-J
H
B IEh

[§-2- g0 -0 ¥
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Then to first order in A and «, the displacement and momentum thick-
nesses (11) become

\
of T T x
S, .1 Iifa £ X e
= 2
_LO+Xsin @le

5 =

2o X 7(Iy - 24 + Ipp)

) Ty ,

= oMy
0 -
21 . T

5 = G,-T—w 7(18-2115+Izz)

=ab - (40)
2] o m
i O - TIHE
5 _7TW (1, 18)+xs1n®7TW[(B-§-)(I7-18)
X =2 2
- By(Ig,2 - Ig,2) - 2 = A (Ig,2 - Ilo,zi]x
ERO+Xsin @Rlxz
)
—22-=d(0;2)
° J

The integrals I, Ig, and (I, - Ig) appearing in (40) ere listed
in the tables of references 20 and 21. The integrals Ig and I10,

whilch are required to compute 19’2- and IlO,Z , may be obteined from
the recurrence relstion

l /= 1
Intl = ?(Blm + Ip.y - 'ﬁ)

The combinetions of integrals (I; - 2Iy, + Ipy) and (Ig - 2I15 + Ipp)

should be computed separately, rather than from the recurrence relation,
to avoid cumulative error. _ -

2LEY
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The Blasius formula (20) mey likewise be expressed in terms of stream
parameters at zero yaw. If a linesr viscosity law is used,

B ool
o
then (from (20))
1/2 1/4
cf-_-xc(Tm) (uﬁ) (1L + A F sin @ x%) (41)
where
_.LiE 1/5 (v _ 1.5 1)_&5_ L
F = Z.T.[OllPr (v - 1)¥ =- 2= 5= -%.‘- =
1, & _n,. %
+4<23 5+.ﬁ) (42)

Introducing the thicknesses (40) and the friction coefficient (41)

into the momentum integral equations (12) and (13) gilves, to first order
in o and A,

axlS(Ro+Xsin®Rlx2)+8(Ro+lsin@Rlx2) (1-:\—x)

E [1 + & X)] s N18a - Npda G(k)]

sin@x

sin@xl

= x(%)l/z(-_uis)l/é l:l + ) sin 9(F - éusin @)XZ] (43)

- @ [1 + d(x)][—a:;z P;8a - Pyda o‘(k)]

end
o)
<7 Piba + P]_Sd.f]-_- [1+ (xﬂ

; Z 1l - (x
- 8[30 + Lo + A sin ®(Rl + Ll)x2] A sin @E- 3

o @ e
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In order to solve (43) and (44), the dependent varisbles o and &
are expanded in powers of (small) yaw parameter \:

tan o = aix + aExZ + .
(45)
8 = 80 + slx + .

Equation (43) yields equations of zero and first order in X\, and
(44) yields a first-order equation as follows: =~ -

By 8 k[T \/2f v \I/t
— +tS=g (= . (46)
ox X o \ Tm udg

By 8 x (VR TN/AE

a2 Fo\t,) \To) o

. -\/'11- (x2)2 o Ooy (Pl - Nl) (a7)

x* s8in @ 0 axz RO
o B2y z sin 6 \ 1 - (x2)2
B + 22— = == LA + o)
.l 0% il = 2 ( 0 Rg) 0 =
=\1/2 s 5 \1/4
K T v
EE) (=) - -

Equation (46) is simply the integral equation for the unyawed cone. The
solution of (46) satisfying the condition &8(x' = 0) = 0 1is

W [7\2/5 S 1\4/5
RGNS

Substitution of (49) into (48) yields

a = sin @ é('lzgl—-hfgié) /1 - (x2)2 (50)

u

- 21 C%
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Then using (49) and (50), the solution of (47) is found to be

ud R

—_—l = E 2 sin @|F - -.é gin @ - _l - é
v 915 u RO

M - P I+ R 1)2/5(& @)“/5 2
Ry 14Pl+930 Em 98y ¥

B &%)

Equations (50) and (51) show that the boundary-layer thickness has
its greatest changes at the windward and leeward rays of the cone and
that the fluid in the boundary layer is deflected most in the horizontal
plane (fig. 1).

z
+ 5 =
u

w)

£
9

BOUNDARY~-LAYER EFFECTS

From the results of the previous section it is possible to find the
effect of the boundary layer on the outer stream and the forces 1t exerts
on the body.

Displacement Surface

Let A(x},x2) designate the distance, in the normel direction from
the body surface, which the potential flow is displaced by the boundary
layer. Moore (ref. 22} has shown that A 18 determined by

5
div[psEsA - ‘—é‘ (pgig - BU) ds(O)] =0 (s2)

where the arrows designate vector quentities. In terms of the previously
defined boundary-layer thicknesses, (52) becomes

) o
S;I Pglly VEgp CA - Sf) = S;E Pg¥s VE11 8: (55)

Equation (53) and the boundary condition at the tip show that, on the
unyawed cone, the surface A has the value of the usual displacement
thickness 3. Substitution of (33) through (36), (40), (49), (50), and
(51) into (53) ylelds

L Ny L +
A 4 1 25z M Lo + Rg
= = Axet = _— ez =2 X

T 5g 1+ Ax (9 D +L0 sin 8 + 5 = To T&P, ¥ 930) (54)
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For a positive value of the yaw parameter X, A is nearly a circular
cone whose axis is inelined downward from that of the body.

Local Friction Coefficient

Because Reynolds' analogy shows that the local friction coefficilent
ie proportional to the local heat-transfer coefficient, it is desirable
to know the local distribution of stresses on the surface of the cone as
well as the net forces. Combining (29), (41), (45), (49), and (51)
yields the friction coefficient:

Cp = k(%)l/z [%(%)1/2 %]-1/5 l:l - X(F sin@-%— D-%‘- sin%—é—) cos ‘If]

=T 1p._-4dgin%e Z
~Cf[ - )«(F 8in @ - 5D - £ sin@a) cos qr] (55)
Using as a megsure of heat transfer the Stanton number,

Qg

St = —
Cp(Two - T.)pu

where a, is the heat transferred at the wall, Cp is the heat capacity,

and Two is the insulagted wall temperature, then

St =

-

Ce

Frictionel Drag Force

For the net forces on the cone it is convenlent to transform the
stresses from the streamline system of coordinates (x-system) to the
body system (r,v,y, fig. 1). The transformetions required are

(o) = o2 Vag + ey & Vez)
1 axt - dx? (58)
W(y¥) = 75106 TO\SE Ve * M 35 Vezz

LST |
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from which

(yr) = T(Ol)[l + GT)?)] (57)

+ L
T(y¥) = AT(01) sin ¥ % sin @(1 +5 Ho 0 )

Tap; ¥ 9%y
The force on an element of area dad on the cone surface is
aF; = 7y yda’
The net force in the direction of eny unit vector ;' is
F(v) =f ’173._'jvida.'j (58)

-,
Tf v 4is in the direction of the cone axis, it has no VY-component, and
the drag force is

he T
Fp= 2 cos @ sin @ff T(yr)r dr av
o0 Jo

The viscous stress sppearing in the integral is, by (12) and (57),

T (yr) ='?(Ol){l - XA cos \k[sin@ F—-;—'D -%’-sinz(@-z_ﬁ

- sin @(z % + %)] } (59)

The frictional draeg coefficient is then
F

D
Bazztrzsin ®

= LO(cos @n@;)l/z ['3%5 (%‘)1/2 (—1%":)]'1/5 [+on®] (s

To first order, there is no change in the drag coefficient with yaw.

Cp

Comparison with the pressure-drag coefficients of reference 18 re-
vesls that the pressure forces are of the order of a hundred times the
frictional forces.
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Frictional Lift Force
->
Consider the force in the direction of unit vector v 1in the plane
of yaw and perpendliculer to the axis.

->
The components of v are

(v. ’VW’vy) = (8in @ cos V¥,-sin ¥,cos @ cos ¥)

(61)
Combination of (57), (58), (60), and (61) yields for the ratio of the
frictional 1ift force to the frictional drag force
Fr, _ Cp

=_L_ jten@ O N - P
FD_ED_ N > [Fsin.@ 9D ssssin(@E sin@(z

gl

£
T ‘p)]
A Rg + L0
+ i (l + 5 ———14-‘P1 T 930)} (62)

Frictlonel Pitching Moment

Congider the moment of forces ebout an axls through the cone apex,
normal to the plane of yaw.

The stress 7T(ry) acts through the apex and

r cos @
so cannot contribute to the moment.

The stress 7T(Yy) haes a moment arm
r cos @, and its component in the upward direction is

-sin ¥ v(¥y)
The pitching mowent is then

r AT
M = -2 s8in ® cos QLJé‘gJé\ Sin'wT(Wy)rzdr ay

3L



LS WA

4

NACA TN 4208 21

Use of equations (57) and (60) results in

_ A
Cy = Fpr cos ©

+ L
=22 tame Z(1+5 —0*To (63)
28 u l4Pl+9Ro

for the frictional pitching moment.

NUMERICAL EXAMPLES

Computations of the boundary layer on the yawed cone have been made
over a free-stream Mach number range of 1 to 4 to show the effect of cone
engle and temperature ratio. The Prandtl number was taken as 0.7.

The computational procedure is as follows. For a given Mach number

and cone angle, the parameters E, X, Z, E/E, and n/E are obtained
from reference 18. For a given Mach number and temperature ratio, the
integrals I; and Ig are obtalned from reference 20 or 21. The in-

tegrals Ig and I are obtalned from I; and Ig by the recursion
formula. The combinations of integrals (I, - 2I;4 + Ip) end

(Ig - 2I15 + Ipg) are functions of M (zero yaw Mach number on the cone
surface) and the temperature ratio T/EW. They are plotted in figure 2,

which shows that they are nesrly linear in MZ. From these parameters
and integrals, the quantities Lg, Iy, Ry, Ry, Py, and N (eq. (40))

may be obtained, and with them the coefficients of the previous section.

In figure 3 1s shown the parameter (from eq. (54))

S R PRS- RO LR W
coswleX):O 9 Lo 9 wly 14 + 9R,

which determines the deflection of the displacement surface axis from
the cone axis. Figure S(a) shows the effect of temperature ratio on a
20° cone, and figure S(b) shows the effect of cone angle at constant tem-
perature ratio. A comparison with the displacement surface of a laminar
adisgbatic boundexry layer (ref. 3) is made. The parsmeter is of the same
order of magnitude for the two boundary layers over the Mach number range
considered, although slightly higher for the laminar flow. The displace-
ment surfeace deflection is slightly grester for low wall temperatures
because of the increased density in the boundary layer.
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The deflection of the inner streamline is determined by the param-
eter (eq. (50})

Lo + Rg )

_E}__ = sin ®EL ———
sin ¥ u \ 14Py + 9Rg

Figure 4 shows that the deflection is considerably less in the turbulent
boundary layer than in the laminar. The fluid in the laminar layer,
having less kinetic energy, is influenced more by the transverse pressure
gradient. Figure 4(&) shows the effect of temperature ratic, and flgure
4(b) shows the effect of cone angle. When the wall temperature is high,
the density in the boundary layer is lowered, and greater deflection
results. - :

The change in local skin-friction coefficient T(Ol)/psug with yaw
is determined by (eq. (35))

oc
- = 1 af =Fsin®—£D--]:sin2®-?_—.-
Cf COS\lf A )‘___.o 9 5 u

Flgure 5, a plot of this quantity, shows that the effect of temperature
ratio is small, whereas the effect of cone angle is apprecisble. The
comparison with the laminar flow again reveals that the turbulent bound-
ary leyer is less affected by yaw. '

The viscous 1lift coefficient (eq. (62)) is shown in figure 6. There
are two types of forces contributing to this coefficient. The viscous
ghear 1s greater on the top of the yawed cone than on the bottom, re-
gulting in & 1ift force in the direction of yaw. The circumferential
forces always give a 1lift force opposing yew. For small-angle cones the
drag forces grow relatively larger with Mach number until finally the
resultant 1ift is in the direction of yaw.

The pitching moment is shown in figure 7. It 1is proportional to
that part of the 1lift caused by the circumferential forces. It 1s
slightly higher for the higher ratios TW/E because of the greater de-
flection of the low-deneity fluid in the boundery layer.

CONCLUDING REMARKS

The over-gll plcture given by the foregoing computations is that the
turbulent boundary layer on the yawed cone behaves qualitatively like the
laminar layer, but the relative megnitude of the effect is always less.
Thus, the deflection of the fluid in the boundary layer, the frictional
11ift, and the frictional pitching are relatlively smaller because of the
higher shesr siresses.

2LSw
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The assumptions entering into the formulation of the problem should
be kept.in mind in interpreting the results. The assumption that the
skin-friction law for plane flow holds for flows with slightly curved
streamlines should not be far from the true picture. The choice of a
power-law profile for the velocity component in direction of the outer
stresm is considered reasonsble because the pressure gradients are small.
But the selection of the proper profile for the transverse component 1s
less certasin and at the same time critical, for it is this profile that
determines the three-dimensional effects. The results presented here
give magnitudes and general trends, but are not necessarily quantitatively
accurate. '

The analysis glves no information sbout the separation of the bound-
ary layer. It is limited to small perturbations, from zero yaw, of the
potential stream; consequently, there are no strong pressure gradients
to induce separstion. Any form factor constructed from ratios of the
boundary-layer thicknesses varies at most to order A over the cone sur-
face, whereas separation is associated with the growth of a form factor
to some large critical value.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, October 24, 1957
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APPENDIX - SELECTION OF DOMINANT STRESS TERMS

The turbulent stresses arise in equation (2) in the covariant de-

rivative T% 1 In a plane flow the normel stresses T8,Tl,Tg and the
2
shear stresses Tg,r% are known from experimental measurement to be of

the same order of magnitude. In three-dimensionsl boundary layers, ad-

ditional stresses T%,T%,T%,T% arise thet may be smaller, but certainly
no larger, than the normel stresses.

Tn the xt equation of motion the stress terms are

1l 1A 1A
—_— T I -
8o 0,0 & 1,1 gp 22

B¢i 5¢l
= _gzo<—6>£ N %0% ) riOOTJ{) ¥ Eil(axlf * Iifi y Iill%.)
dTk
* giz(Bxg + TypTs - r%z%) (A1)

where it is understood that 1 is summed from O to 2. The r;n are
the Christoffel symbols:

1 _
ri,=0 for lfm#nfl (a2)
Also,
2
= = 4. =
%o rz,=0 an 8o = 1 (A3)

Using (A2) and (A3), the right side of (Al) becomes

o 3t o
S — 2+“§gil“%1+%(rio'-}—rgl"}"gz>

+
ax® 811 o+ S22 xR 811 822

1 - S N N S |
"'% I%z*"%(‘g rll+g22 12 " gpp 22

822 11

2 2 1

€11 822

2LEY
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Consider first the partial derivatives in (A4). They may be written
in terms of the physical components and arc lengths,

In a boundary layer, the stresses vary rapidly in the direction normal
to the surface, .but slowly in directions paraliel to it. Thus,

o .1 o a 1
-58—(—6)- 5’ vhile EB—(T)- and m s’ where As 1s a distance,

measured on the surface, over which a stress varies an appreclable part
of its total magnitude. Then,

arglo} ot(11) 3w(10) /ot(12) _ As o
s(0 s(1)’ os(0 s(2 5 1 (46)
The Christoffel symbols are composed of terms of the form

1 O%mm _ 9 1
Cmm ox | oD um

Therefore, to take a typlcal term as an example,

0 1n g7
o L L ~ 1t 21) ——
181 21 /g1 o21) ds(2)

L1 =(21)
'\/3_11 s (a7)

Consequently,

310

1 8 1l .48 s

e % &1 D

Thus all terms not involving derivatives of the stresses may be neglected.
(The fact that some of the derivatives in the Christoffel symbols are
taken with respect to x0 doee not make them large, for the 813 s8re

nearly constant through the boundary layer.)

It is seen that the only stress term which remsins in the xt equa-
tion of motion is

1 ot(10
s(0

7
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A simllar argument shows that in the xz equation of motion the only

term of importance is

1 a%(20

2
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Flgure 1. - Coordlnate systems on unyawed and yawed cones.
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